organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Glycinium hydrogen fumarate glycine solvate monohvdrate

S. Natarajan,^a A. Kalyanasundar,^a J. Suresh,^b S. A. Martin Britto Dhas^a and P. L. Nilantha Lakshman^{c*}

^aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, ^bDepartment of Physics, The Madura College, Madurai 625 011, India, and ^cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya (81100), Sri Lanka Correspondence e-mail: nilanthalakshman@yahoo.co.uk

Received 7 December 2008; accepted 15 January 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.095; data-to-parameter ratio = 12.2.

In the title compound, $C_2H_6NO_2^+ \cdot C_4H_3O_4^- \cdot C_2H_5NO_2 \cdot H_2O_3$ the asymmetric unit contains two glycine residues, one protonated and one in the zwitterionic form, a hydrogen fumarate anion and a water molecule. Through N-H...O and $O-H \cdots O$ hydrogen bonds, molecules assemble in layers parallel to the $(10\overline{1})$ plane, one layer of hydrogen fumarate anions alternating with two layers of glycine molecules. In each glycine layer, hydrogen bonds generate an $R_4^4(19)$ graphset motif. Further hydrogen bonds involving the water molecule and the hydrogen fumarate anions result in the formation of a three-dimensional network.

Related literature

For related structures and general background, see: Alagar et al. (2003a,b); Kvick et al. (1980). For hydrogen-bonding motifs, see: Etter (1990); Bernstein et al. (1994).

Experimental

Crystal data $C_2H_6NO_2^+ \cdot C_4H_3O_4^- \cdot -$ C2H5NO2·H2O

a = 13.0580 (12) A
b = 6.8251 (7) Å
c = 15.3263 (14) Å
$\beta = 112.65 \ (2)^{\circ}$
V = 1260.6 (3) Å ³

Data collection

Nonius MACH3 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.923, T_{\max} = 0.953$ 2742 measured reflections 2219 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture o
$wR(F^2) = 0.095$	independent and constrained
S = 1.04	refinement
2219 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
182 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
3 restraints	

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Z = 4

Mo $K\alpha$ radiation

1922 reflections with $I > 2\sigma(I)$

2 standard reflections

frequency: 60 min

intensity decay: none

 $\mu = 0.14 \text{ mm}^{-1}$

T = 293 (2) K $0.18 \times 0.16 \times 0.11 \ \mathrm{mm}$

 $R_{\rm int} = 0.020$

SN thanks the DST for the FIST programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2415).

References

- Alagar, M., Krishnakumar, R. V., Rajagopal, K., Subha Nandhini, M. & Natarajan, S. (2003b). Acta Cryst. E59, 0952-0954.
- Alagar, M., Krishnakumar, R. V., Subha Nandhini, M. & Natarajan, S. (2003a). Acta Cryst. E59, 0857-0859.
- Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Kvick, Å., Canning, W. M., Koetzle, T. F. & Williams, G. J. B. (1980). Acta Cryst. B36, 115-120.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2009). E65, o462 [doi:10.1107/S1600536809001974]

Glycinium hydrogen fumarate glycine solvate monohydrate

S. Natarajan, A. Kalyanasundar, J. Suresh, S. A. M. B. Dhas and P. L. N. Lakshman

Comment

Glycine is the simplest amino acid and is the only amino acid that is not optically active. This amino acid is essential for the biosynthesis of nucleic acids, as well as the biosynthesis of bile acids, porphyrins, creatine phosphate and other amino acids. Fumaric acid is among the organic compounds widely found in nature, and is key intermediate in the biosynthesis of organic acids. Our main interest in glycine compounds relates to their geometric features of non-covalent interactions at atomic resolution that are important in the structural assembly and function of proteins. X-ray investigations of amino acid complexes with fumaric acid seem to have been first initiated in our laboratory (Alagar *et al.*, (2003*a*), (2003*b*)).

The asymmetric unit is built up from two glycine residues, a ionized fumaric acid and a water molecule linked by hydrogen bonds (Fig. 1). One of the glycine residue has been protonated, and the other one is in the zwitterionic form. The fumaric acid molecule is in the ionized state, as expected from the strength of the acid and the required charge neutrality of the salt.

The glycine carboxyl skeletons including atoms O5, O6, C5, C6 and O7, O8, C7, C8 are both planar with rms deviations of 0.0025 (6) Å and 0.0002 (6) Å respectively. The N2 and N1 atoms are slightly displaced out of these planes, by 0.138 (3)Å and 0.139 (3)Å respectively, corresponding to a small rotation around C5—C6 and C7—C8 atoms respectively. The relevant torsion angles are O5—C6—C5—N2 of 6.3 (2)°, O6—C6—C5—N2 of -174.47 (13)° and O7—C7—C8—N1 of 174.13 (13)°, O8—C7—C8—N2 of -5.8 (2)°. These can be compared with the corresponding values in pure γ -glycine 167.1 (1)° and -15.4 (1)°, respectively (Kvick *et al.*, (1980)), which is more distorted from planarity. The fumaric acid molecule has a non crystallographic centre of symmetry, and is planar with *trans* configuration about the central C=C bond.

Through N-H···O and O-H···O hydrogen bondings, the molecules assemble in layers parallel to the $(1 \ 0 \ -1)$ plane, one layer of fumaric acid alternates with two layers of glycine (Fig. 2). In each layer of glycine, the hydrogen bonds generate a graph set motif $R_4^4(19)$ (Etter, 1990; Bernstein *et al.*, 1994) (Fig.3, Table 1). Further H bonds involving the water and the fumaric acid result in the formation of a three dimensional network (Fig. 2, Table 1). Unlike the other amino acid fumaric acid complexes (Alagar *et al.*, 2003*a*,*b*) there are hydrogen bonds found between the fumaric acid molecules.

Experimental

Colourless single crystals of the complex were grown, as transparent needles by slow evaporation method from a saturated aqueous solution containing glycine and fumaric acid in 1: 1 stoichiometric ratio.

Refinement

H atoms attached to C and N atoms were found in difference Fourier but introduced in calculated position and treated as riding on their parent atoms with C-H= 0.97Å (CH₂) or 0.93Å (aromatic) and N-H= 0.89\%A with $U_{iso} = 1.2U_{eq}(C)$ for CH and $U_{iso} = 1.5U_{eq}(N)$. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H…H= 1.39 (2)Å) with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.

Fig. 3. Cyclic chain between the glycine molecules generating a graph set motif $R_4^4(19)$.

Glycinium hydrogen fumarate glycine solvate monohydrate

Crystal data	
$C_{2}H_{6}NO_{2}^{+}\cdot C_{4}H_{3}O_{4}^{-}\cdot C_{2}H_{5}NO_{2}\cdot H_{2}O$	$F_{000} = 600$
$M_r = 284.23$	$D_{\rm x} = 1.498 { m Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
a = 13.0580 (12) Å	$\theta = 2-25^{\circ}$
b = 6.8251 (7) Å	$\mu = 0.14 \text{ mm}^{-1}$
c = 15.3263 (14) Å	T = 293 K
$\beta = 112.65 \ (2)^{\circ}$	Needle, colourless
$V = 1260.6 (3) \text{ Å}^3$	$0.18\times0.16\times0.11~mm$
Z = 4	

Data collection

Nonius MACH3 diffractometer	$R_{\rm int} = 0.020$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.6^{\circ}$
<i>T</i> = 293 K	$h = 0 \rightarrow 15$

ω –2 θ scans	$k = -1 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -18 \rightarrow 16$
$T_{\min} = 0.923, T_{\max} = 0.953$	2 standard reflections
2742 measured reflections	every 60 min
2219 independent reflections	intensity decay: none
1922 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.095$	$w = 1/[\sigma^2(F_0^2) + (0.0522P)^2 + 0.4133P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2219 reflections	$\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$
182 parameters	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
3 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{iso}*/U_{eq}$
01	-0.35547 (8)	0.60201 (18)	0.80983 (7)	0.0389 (3)
O3	-0.00347 (8)	0.78212 (19)	1.08657 (7)	0.0422 (3)
Н3	0.0631	0.7894	1.1190	0.063*
O2	-0.30562 (8)	0.70595 (18)	0.69432 (7)	0.0425 (3)
O5	0.25539 (10)	-0.00488 (18)	0.92332 (8)	0.0484 (3)
O6	0.39983 (11)	0.16938 (19)	1.01858 (9)	0.0537 (3)
H6	0.3768	0.2527	0.9770	0.081*
O7	0.14606 (12)	-0.02415 (18)	0.57652 (9)	0.0534 (3)
N1	0.08905 (10)	0.19739 (19)	0.76699 (8)	0.0333 (3)

H1A	0.0202	0.1504	0.7457	0.050*
H1B	0.0891	0.3205	0.7862	0.050*
H1C	0.1325	0.1246	0.8152	0.050*
08	0.08973 (12)	-0.14584 (19)	0.68336 (9)	0.0559 (4)
O4	0.05847 (8)	0.72700 (18)	0.97294 (7)	0.0401 (3)
N2	0.29350 (10)	-0.30064 (19)	1.04930 (9)	0.0338 (3)
H2A	0.2224	-0.2682	1.0323	0.051*
H2B	0.3130	-0.3833	1.0979	0.051*
H2C	0.3033	-0.3578	1.0009	0.051*
C8	0.13098 (13)	0.1921 (2)	0.69080 (11)	0.0362 (4)
H8A	0.2082	0.2319	0.7157	0.043*
H8B	0.0895	0.2846	0.6419	0.043*
C2	-0.13519 (11)	0.7110 (2)	0.93693 (10)	0.0302 (3)
H2	-0.1884	0.7059	0.9634	0.036*
C1	-0.01744 (11)	0.7426 (2)	1.00091 (9)	0.0280 (3)
C3	-0.16785 (12)	0.6899 (2)	0.84527 (10)	0.0346 (3)
H3A	-0.1141	0.6923	0.8194	0.041*
C7	0.12086 (12)	-0.0101 (2)	0.64808 (10)	0.0324 (3)
C4	-0.28582 (11)	0.6623 (2)	0.77979 (9)	0.0287 (3)
C6	0.33294 (12)	0.0206 (2)	0.99677 (10)	0.0338 (3)
C5	0.36250 (13)	-0.1231 (2)	1.07712 (11)	0.0388 (4)
H5A	0.4401	-0.1591	1.0971	0.047*
H5B	0.3523	-0.0618	1.1303	0.047*
O1W	0.07651 (14)	0.58567 (19)	0.80916 (10)	0.0601 (4)
H1W	0.071 (2)	0.631 (4)	0.8594 (11)	0.090*
H2W	0.088 (2)	0.682 (3)	0.7788 (15)	0.090*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0269 (5)	0.0548 (7)	0.0319 (5)	0.0017 (5)	0.0080 (4)	0.0105 (5)
O3	0.0298 (5)	0.0669 (8)	0.0243 (5)	0.0018 (5)	0.0042 (4)	-0.0097 (5)
O2	0.0319 (6)	0.0647 (8)	0.0241 (5)	-0.0057 (5)	0.0034 (4)	0.0094 (5)
O5	0.0503 (7)	0.0474 (7)	0.0359 (6)	0.0032 (5)	0.0039 (5)	0.0119 (5)
O6	0.0615 (8)	0.0406 (7)	0.0504 (7)	-0.0074 (6)	0.0119 (6)	0.0091 (6)
O7	0.0852 (9)	0.0354 (6)	0.0595 (8)	-0.0111 (6)	0.0498 (7)	-0.0103 (6)
N1	0.0337 (6)	0.0342 (7)	0.0303 (6)	0.0007 (5)	0.0105 (5)	-0.0021 (5)
O8	0.0896 (10)	0.0358 (7)	0.0515 (7)	-0.0176 (6)	0.0374 (7)	-0.0025 (6)
O4	0.0281 (5)	0.0617 (8)	0.0274 (5)	-0.0029 (5)	0.0073 (4)	-0.0041 (5)
N2	0.0350 (6)	0.0359 (7)	0.0314 (6)	0.0050 (5)	0.0137 (5)	0.0077 (5)
C8	0.0411 (8)	0.0313 (8)	0.0408 (9)	-0.0030 (6)	0.0208 (7)	-0.0021 (6)
C2	0.0274 (7)	0.0322 (8)	0.0286 (7)	0.0027 (6)	0.0081 (6)	-0.0002 (6)
C1	0.0304 (7)	0.0261 (7)	0.0236 (7)	0.0020 (6)	0.0062 (6)	0.0007 (5)
C3	0.0261 (7)	0.0472 (9)	0.0278 (7)	0.0007 (6)	0.0074 (6)	0.0036 (6)
C7	0.0327 (7)	0.0300 (8)	0.0332 (8)	-0.0023 (6)	0.0115 (6)	0.0001 (6)
C4	0.0267 (7)	0.0317 (7)	0.0245 (7)	0.0028 (6)	0.0062 (6)	0.0031 (6)
C6	0.0356 (8)	0.0343 (8)	0.0340 (8)	0.0081 (6)	0.0161 (7)	0.0030 (6)
C5	0.0367 (8)	0.0410 (9)	0.0333 (8)	0.0007 (7)	0.0074 (6)	0.0067 (7)

O1W	0.1029 (11)	0.0375 (7)	0.0570 (8	3) -(0.0019 (7)	0.0496 (8)	-0.0013 (6)
-							
Geometric paran	neters (A, ⁶)						
O1—C4		1.2375 (17)		N2—H2B			0.8900
O3—C1		1.2826 (17)		N2—H2C			0.8900
O3—H3		0.8200		C8—C7			1.511 (2)
O2—C4		1.2691 (17)		C8—H8A			0.9700
O5—C6		1.2021 (19)		C8—H8B			0.9700
O6—C6		1.296 (2)		С2—С3			1.309 (2)
O6—H6		0.8200		C2—C1			1.4869 (19)
O7—C7		1.2643 (19)		С2—Н2			0.9300
N1—C8		1.4686 (19)		C3—C4			1.4917 (19)
N1—H1A		0.8900		С3—НЗА			0.9300
N1—H1B		0.8900		C6—C5			1.504 (2)
N1—H1C		0.8900		C5—H5A			0.9700
O8—C7		1.2185 (19)		С5—Н5В			0.9700
O4—C1		1.2267 (18)		O1W—H1V	W		0.858 (10)
N2—C5		1.472 (2)		O1W—H2V	W		0.852 (10)
N2—H2A		0.8900					
С1—О3—Н3		109.5		04—C1—C	03		124.08 (13)
С6—О6—Н6		109.5		04—C1—C	22		121.76 (12)
C8—N1—H1A		109.5		03—C1—C	22		114.14 (12)
C8—N1—H1B		109.5		C2—C3—C	C4		124.12 (14)
H1A—N1—H1B		109.5		C2—C3—H	H3A		117.9
C8—N1—H1C		109.5		C4—C3—H	H3A		117.9
H1A—N1—H1C		109.5		08—C7—C	07		124.76 (15)
H1B—N1—H1C		109.5		08—C7—C	28		119.37 (13)
C5—N2—H2A		109.5		O7—C7—C	28		115.87 (13)
C5—N2—H2B		109.5		01—C4—C	02		125.13 (13)
H2A—N2—H2B		109.5		01—C4—C	23		120.55 (12)
C5—N2—H2C		109.5		O2—C4—C	23		114.32 (13)
H2A—N2—H2C		109.5		O5—C6—C	D6		126.57 (15)
H2B—N2—H2C		109.5		O5—C6—C	25		122.03 (15)
N1—C8—C7		111.70 (12)		O6—C6—C	25		111.39 (13)
N1—C8—H8A		109.3		N2-C5-C	26		111.37 (12)
С7—С8—Н8А		109.3		N2-C5-H	H5A		109.4
N1—C8—H8B		109.3		C6—C5—H	15A		109.4
С7—С8—Н8В		109.3		N2-C5-H	H5B		109.4
H8A—C8—H8B		107.9		C6—C5—H	15B		109.4
C3—C2—C1		123.39 (14)		Н5А—С5-	–H5B		108.0
С3—С2—Н2		118.3		H1W—O1V	W—H2W		107.4 (19)
C1—C2—H2		118.3					
O5—C6—C5—N	2	6.3 (2)		O7—C7—C	C8—N1		174.08 (13)
06—C6—C5—N	2	-174.52 (13)		O8—C7—C	C8—N1		-5.8 (2)
Hydrogen-bond s	geometry (Å, °)						
D_H…4		_ת	_Н	H… 4	1	$D \cdots A$	D—H…4
~ 11 /1		<i>D</i> -		11 /1		~ 11	

O3—H3···O2 ⁱ	0.82	1.66	2.4743 (15)	174
O6—H6···O7 ⁱⁱ	0.82	1.70	2.4871 (17)	160
N1—H1A····O1 ⁱⁱⁱ	0.89	2.01	2.8891 (17)	168
N1—H1B…O1W	0.89	1.86	2.7475 (19)	172
N1—H1C···O5	0.89	2.01	2.8907 (18)	168
N2—H2A····O4 ^{iv}	0.89	1.98	2.8386 (16)	162
N2— $H2B$ ···O1 ^v	0.89	1.98	2.8638 (17)	170
N2—H2C····O7 ^{vi}	0.89	1.93	2.8000 (17)	164
O1W—H1W···O4	0.858 (10)	1.925 (10)	2.7825 (17)	178 (2)
O1W—H2W···O8 ^{vii}	0.852 (10)	1.883 (11)	2.7133 (18)	165 (2)

Symmetry codes: (i) x+1/2, -y+3/2, z+1/2; (ii) -x+1/2, y+1/2, -z+3/2; (iii) -x-1/2, y-1/2, -z+3/2; (iv) x, y-1, z; (v) -x, -y, -z+2; (vi) -x+1/2, y-1/2, -z+3/2; (vii) x, y+1, z.

Fig. 3